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ABSTRACT 

In this report, students discuss the capability of Light Detecting and Ranging            

(LiDAR/LIDAR/lidar) and its properties; the ability to use the Intel Realsense camera system and its               

operations; the cloud based streaming services designed and tested; and the integration of all systems to                

create an interior mapping system to complement the resources available and to create a 3D Virtual                

Reality (VR) space that is accurate to real building space. This document will provide information about                

similar case study experiments and technical papers discussing the physics behind LiDAR, the             

implementation of Robot Operating System (ROS), RPLiDAR, Intel Realsense and robot platforms. The             

intent of this project was to create a mobile platform that would be capable of creating a virtual model and                    

map of any interior spaces. While the tests conducted showed promise of this project, due to the                 

COVID-19 Pandemic, our testing and final implementation was cut short. Code and explanations are              

included later for use and implementation.   



INTRODUCTION 

The premise of this project is to use Light Detecting and Ranging (LIDAR/Lidar), a 360 degree camera,                 

other sensors, software, and a live website to create real time 3-D models of interior spaces. Using an                  

oscillating mount, and data capture software, the interior of a building was mapped, modelled and added                

to a virtual world that can be explored using Virtual Reality (VR) goggles. With the underlying data                 

points and a 360 degree image overlay, the user is able to explore exact virtual replicas of the existing                   

building. This document explores the mathematics behind the capture program, the theory of LIDAR, the               

system used when stitching 360° videos and images, and the method for integration of the LIDAR data,                 

the 360° video overlay and the viewing software. 

 

THEORY 

 

Case Studies 

From our research, a group from John Hopkins conducted similar experiments and equipment             

designs to this project. They custom made a housing/mount for the PrimeSense and RGB              

camera. A total of 4 sensor cameras (2 normal, 1 RGB and the PrimeSense) used to collect data.                  

The group had a number of problems with the algorithm working since the platform is               

continually moving. When choosing the cameras and equipment, the researchers made the            

decision based on frame rate, field of view, bandwidth, resolution and cost. They seem to choose                

the best cameras for the mid-low price range. And finally, when choosing the main computing               

system for the drone, the group also used the matrix of computing power, size, and price. They                 

seem to use consistent decision matrices as we have when determining which equipment to use               

and which to pass over. 

 

Another article, LOAM: Lidar odometry and mapping authored by Ji Zhang and Sanjiv Singh,              

overviews how the authors created a system using a 2 axis lidar to create 3-d lidar maps. The                  

benefit of using lidar is that it is not affected by the ambient light. The benefit of this system over                    



others is that this will minimize drift in lidar odometry estimation. The rest of this article gives                 

an overview of the odometry algorithms used, a basic outline for their lidar odometry code, and                

how lidar mapping works. Their method has been tested indoors and outdoors with success and               

uses a battery and laptop to capture data. The system uses two algorithms in parallel and                

compares the data between the two the mapping algorithm and the odometry algorithm. 

 

From A Guide for 3-D Mapping with Low-Cost Sensors Using ROS\ the authors present an               

overview and instructions on how to setup a 3-d mapping system using the xbox kinect and the                 

Rplidar A2. This article gave students good information as how to set up and gather data from                 

the rplidar and gives some insight on how to combine the two systems using ros kinetic, the same                  

ros currently used to run the project’s lidar system. This project will differ by using the intel real                  

sense, a more capable sensor system. 

 

Finally, in Simultaneous Localisation and Mapping (SLAM) Part I The Essential Algorithms, the             

research article covers the basic algorithms of SLAM. First the article defines what SLAM is,               

Simultaneous Localisation and Mapping. This algorithm gives a machine the ability to track its              

position in an environment and also the ability to map a new environment it has not yet explored.                  

SLAM works by using variations of the Kalman filter and the Blackwellized particle filter. This               

article further gives an explanation of how both of these filters work, it overviews the equations                

necessary for measurement updates and point tracking. It then discusses what points are used for               

tracking. This article also gives an insight into the future of slam. 

Equipment Research 

Lidar: 

After deciding to use lidar for the room imaging low cost and easily available lidar sensors were                 



compared. The lidar was chosen based on the following criteria. Power Consumption: it was              

necessary to have low power consumption so that the lidar could be run off of a raspberry pi so                   

the final package could be small and easily portable. Programmability: this was the most              

important factor in choosing a lidar. The lidar needed to have an open software development kit                

(SDK) and have support and code readily available. This will reduce the amount of time it takes                 

to integrate multiple components and increase the usability of the lidar data. Accuracy: accuracy              

was also very important in the decision making process. The lidar chosen needs to be very                

accurate as it will be used to create a dimensionally accurate 3-D building model. 

 

Table 1: LIDAR selection and information chart 

Upon careful consideration, the decision was made to choose the RPLIDAR A3 as our LiDAR 

for the project. The device was high enough quality, had an SDK, had a good accuracy, and was 

power effective enough for the price. From the point the RPLIDAR A3 was chosen, the project 

began to take shape and the testing/ familiarization process could take place. Many of the other 

options were not selected because of their prices, power consumption or their accuracy were not 

to standard. 

Robot Platform: 

The next area to determine was how to map the rooms in a systematic way. The ideas of using a robot                     

platform or remote control car/platform was presented. The robots below were considered for the project. 

Category TurtleBot3 Burger Turtlebot3 Waffle Turtlebot3 Burger Pi DJI RoboMaster  



Battery Lithium polymer 11.1V   
1800mAh / 19.98Wh 5C 

Lithium polymer  
11.1V 1800mAh /   
19.98Wh 5C 

Lithium polymer 11.1V   
1800mAh / 19.98Wh 5C 

Lithium Polymer  
10.8(11.1)V 2400mAh/  
25.92Wh 

Battery Life 2h 30m 2h 2h 35min 

LDS(Laser Distance  
Sensor) 

360 Laser Distance   
Sensor LDS-01 

360 Laser Distance   
Sensor LDS-01 

360 Laser Distance Sensor    
LDS-01 - 

Camera - Intel® Realsense™  
R200 

Raspberry Pi Camera   
Module v2.1 Proprietary 

SBC (Single Board   
Computers) 

Raspberry Pi 3 Model B     
and B+ Intel® Joule™ 570x Raspberry Pi 3 Model B and      

B+ Proprietary-> uses 

Price 549$ new X 1400$ new 549$ 

Table 2: TurtleBot3 comparison between Burger, Waffle, and Burger Pi bots. 

 

 

 

 

Figure 1: These are the burger and Waffle Pi bot platforms considered for the project. 

 

When researching options to use as a platform the TurtleBot3 Burger, Waffle, and Waffle Pi               

arouse as possible solutions. They are sturdy research and open source platform with ability to               

integrate LiDAR and Intel RealSense cameras easily (actually depicted on the Waffle Pi bot).              

There have been multiple research teams/graduate thesis publications for LiDAR mapping and            

other applications with these platforms. They are very modular in design allowing for multiple              

configurations. They are slightly more expensive (Burger Pi) new, but if we can find a used one                 



with everything but the sensors, possibly cheaper? They are decent platforms if we don’t care               

about costs. 

EXPERIMENT 

 

Lidar- 

Tried to run the RPlidar with raspberry pi running ubuntu 18.04. ROS applications are not supported by                 

ubuntu 18.04 and will not download properly to the raspberry pi. The solution to this problem will be                  

changing the operating system on the raspberry pi to either an earlier version of ubuntu (16 or earlier) or a                    

version of debian optimized for the raspberry pie 

 

Upon further research and testing ubuntu 16 and ros kinetic was successfully loaded onto the raspberry                

pie. From here the rplidar software package was loaded onto the pi and the rplidar a2 was successfully ran                   

using rviz. One problem arose when running the lidar off of the raspberry pie. After running the lidar for                   

30+ minutes the raspberry pie would overheat and would have to be powered down. The next steps will                  

be to get raw data from the lidar scan and to research solutions to the overheating problem. 

Lidar Test Parameters 

The following tests were used to begin collecting data with the lidar: Stationary Lidar              

with stationary walls; Stationary Lidar with moving simulated walls; Movin Lidar stationary            

walls; Moving Lidar and moving the simulated walls. Each test will use the RPLidar, Raspberry               

pi, and visual monitor. All tests will have the lidar stationary to begin the test for 5 seconds to                   

calibrate and create the basepoint location values. Store those data points as the initial position of                

the robot/platform. After the baseline is recorded, the commands are executed to begin             

continuous data collection. Once data begins streaming, move the respective objects to determine             

the delta of the points collected. Record data as it is collected while time stamping all data                 

collected.  

Procedure: 

1) Select enclosed location for testing. 

2) Set up the RPLidar unit and data collection system. 

3) Begin calibration shoot. Record those data points 



4) Double check calibration complete. 

5) Begin moving Lidar/Walls/both to collect deltas 

5a) For tests of moving the lidar, move the device 1’ in the x axis and y axis (+/-) on a                     

box like course to accentuate the movement delta. 

      

Position 1 Position 2 

       

Position 3 Position 4 

Figures 2 (a-d): Lidar test initial testing 

 

HOLD ON THIS TEST: 5b) for tests of moving the walls, move each wall individually in the 



respective x-y (+/-) directions 1’. After moving, move it back and then move the next wall. 

5c) Tests that have both will begin with moving the Lidar, then the walls, then both in the (+/-) 

x-y plane. Each individual move will only have one object moving at a time. 

5d) Upon successful data collection, storage, and calculation-calibration, begin moving 2 objects 

at simultaneously. 

 

Results: 

 

Figure 3: Lidar Initial Test result 



 

Figure 4: Second Lidar Initial Test result 

Though the data can be slightly difficult to understand at first glance, the data captured actually                

shows the idea of what we are wanting to do. The overlap of the boxes for the series 1-4                   

represent the movement of the LiDAR and the different tests we conducted. The data points that                

are outliers are correct because the lidar was actually capturing the data from the open corner in                 

the simulated box. These data points look useless, but they help to explain the idea that the lidar                  

is not stopping at the imaginary fourth wall but going out into the free space and collecting data                  

still. 

Experiment 2: 

Using the Lidar and Hector SLAM to create a 2-D model of an indoor environment 

Following the first experiment it was determined that running the lidar off of a Raspberry Pi 3                 

was ineffective. In the future it will need to be run from a more powerful Pi 4 or from a laptop.                     

For the ease of usability testing continued on a laptop using Ubuntu 18.04 and ROS Melodic. In                 

order to create a 2-D map of an environment the rplidar was used to gather data and then Hector                   



SLAM was used on ROS to create a map of the test area. The photos below show the outside of                    

the Engineering Research Center at the university and the map created on the 8th floor inside the                 

building.  

 

Figure 5: Google maps image and Lidar 2D map of Engineering Research 

Center 

During this experiment there were a few trials. During each of the trials a person would enter or                  

exit one of the rooms attached to the hallway being surveyed. This disturbance would break the                

map. The map would break because the interference would cause the software to lose track of its                 

position in the environment. This test took place on the 8th floor of the ERC in the highlighted                  

area on the image above. It can be also noted that having the lidar held by a human during the                    



test induces too much error into the measurements as when a human walks their plane may                

change up or down and the lidar can be rotated severely damaging the map being made. In the                  

future It will need to be placed on a cart and pushed eliminating any uncertainty.  

Experiment 3: 

Using the Intel RealSense camera and RTAB-Map package to create a 3-D model of an               

indoor environment 

A wrapper for ROS of the RTAB-Map SLAM approach was used to create 3-D models of                

environments. The launch file included with the package was used to initiate the source files.               

Arguments were passed into the launch file to update the package on the ROS topics               

corresponding to the intended variable such as the depth topic produced by the camera.  

  

Figure 6: 3-D Model of an environment visualized with RTAB-Map Database Viewer 

There were difficulties during experimentation such as the fragility of the camera’s motion. If the 

camera was moved too quickly or bumped during mapping, the map creation would be thrown 

off balance and would need to be restarted. A human arm was used to steady the camera as it 

mapped the room resulting in natural unsteadiness when performing. This caused numerous 



restarts of mapping and also produced an uneven  3-D Model of the intended environment.  

Implementation: 

Package Sources: 

RTAB-Map: https://github.com/introlab/rtabmap_ros 

Librealsense (prerequisite for Realsense2_camera package):    

https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md 

- May need to download source from development instead of master branch.           

Latest Ubuntu versions may not be compatible with master branch          

progress. 

Realsense2_camera: 

https://github.com/IntelRealSense/realsense-ros#installation-instructions 

 

Commands:  

1) roslaunch realsense2_camera rs_camera.launch align_depth:=true 
- “Realsense2_camera” ROS package needed 
- This launch file starts the RealSense camera to print to base ROS topics 

2) roslaunch rtabmap_ros rtabmap.launch rtabmap_args:="--delete_db_on_start"    
depth_topic:=/camera/aligned_depth_to_color/image_raw 
rgb_topic:=/camera/color/image_raw camera_info_topic:=/camera/color/camera_info  

- “Rtabmap_ros” ROS package needed 
- Start command 1 in a separate terminal before this command 

3) rtabmap-databaseViewer  
- Open “rtabmap.db” file inside software to visualize model 
- RTABMap package automatically creates “rtabmap.db” file in “.ros” folder in          

home folder (file is possibly elsewhere) 

4) Using RViz  

https://github.com/introlab/rtabmap_ros
https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md
https://github.com/IntelRealSense/realsense-ros#installation-instructions


- “Rosrun rviz rviz” command to start rviz (may also be started by argument to              
rtabmap.launch file) 

- Visualize cloud by adding “/rtabmap/MapData” topic to RViz 

 

 
Experiment 4: 

Using the Intel RealSense camera and RTAB-Map package with Lidar and Hector SLAM             

to create model with 2-D and 3-D representation 

An attempt to simultaneously use both the RealSense camera and Lidar sensor was performed by               

utilizing both libraries used when performed individually. The RTAB-Map package allowed for            

inclusion of laser scan by passing appropriate arguments to the launch file. Arguments             

,“subscribe_scan” and “icp_odometry”, caused the map generation to integrate new technologies           

instead of solely relying on RealSense measurements. The mapping package based itself on             

being installed inside a robot so manipulation of real-world coordinate frames of the two camera               

locations were required. A ROS package called tf maintains relationships between frames seen             

by all parts of the robot to maintain a realistic consistency of part locations. Since no robot body                  

was used, only a human arm to hold both cameras, the camera/sensors were estimated at a                

distance of how far off the ground they were.  



 

Figure 7: RViz visualization of combined RealSense and Lidar mapping 

Issues were immediately present in the visualizations as the 3-D and 2-D models were rotated in 

different directions. This may have been fixed with additional tinkering of the coordinate frames 

of both cameras. Also, the lidar seemed to create more than one representation of the 

environment. Both packages used, RTAB-Map and Hector SLAM, were running simultaneously 

so this may have caused an overlap of output from the lidar sensor to its desired ROS topic 

creating different map representations.  

Implementation:  

Package Sources: 

Lidar Hector Slam: https://github.com/NickL77/RPLidar_Hector_SLAM  

RTAB-Map: https://github.com/introlab/rtabmap_ros 

Librealsense (prerequisite for Realsense2_camera package):    

https://github.com/NickL77/RPLidar_Hector_SLAM
https://github.com/introlab/rtabmap_ros


https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md 

- May need to download source from development instead of master branch.           

Latest Ubuntu versions may not be compatible with master branch          

progress. 

Realsense2_camera: 

https://github.com/IntelRealSense/realsense-ros#installation-instructions 

-  

Commands:   

1) roslaunch realsense2_camera rs_camera.launch align_depth:=true 
- “Realsense2_camera” ROS package needed 
- This launch file starts the RealSense camera to print to base ROS topics 

2) roslaunch rtabmap_ros rtabmap.launch rtabmap_args:="--delete_db_on_start"    
depth_topic:=/camera/aligned_depth_to_color/image_raw 
rgb_topic:=/camera/color/image_raw camera_info_topic:=/camera/color/camera_info  
subscribe_scan:="true" frame_id:="base_link" rtabmapviz:=false 

- “Rtabmap_ros” ROS package needed 
- Start command 1 in a separate terminal before this command 

3) sudo chmod 666 /dev/ttyUSB0 
- Needed to give permission for LIDAR use when plugged in with USB 

4) roslaunch hector_slam_launch mapTest.launch 
- “mapTest.launch” is a custom launch file based on the launch file given in the              

“hector_mapping” package launch folder called “mapping_default.launch”.      
Additional commands were added to the given launch file (See Below) and then             
saved as a different custom file inside the “hector_slam_launch” package folder. 

5) rosrun tf view_frames 
- This command prints the tf tree of the robot system. Tf is a ROS library that                

controls the different coordinate frames or positions of each robot part (RealSense            
camera, lidar, robot frame, etc.) 

- Commands added below to a launch file tell the mapping package where the             
RealSense Camera is relative to the rest of the robot.  

 

https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md
https://github.com/IntelRealSense/realsense-ros#installation-instructions


Commands added to end of “mapping_default.launch” file in Hector_mapping package: 

<node pkg="tf" type="static_transform_publisher"  name="base_to_color" 
 args="0 0 0.74 0 0 -1.5707963 /base_link /camera_color_optical_frame 100" /> 
 
  <node pkg="tf" type="static_transform_publisher" name="color_to_depth" 

args="-0.1325 -0.1975 0.0 -1.570796327 0.0 0.0 /camera_color_optical_frame       
/camera_depth_optical_frame 100" /> 
 

Optical Flow 

Optical flow is a class of algorithms that track the positions of objects in a series of                 

frames through time. For example, an optical flow algorithm can be used to trace the movement                

of a particular object in a video. It was originally thought that optical flow could be used to                  

determine the distance between camera and an object. However, based on current research it is               

only capable of calculating relative distance.  

 



Figure 8: OpenCV Optical Flow Tracking Points on Globe. 

Intel Realsense 

The Intel Realsense is a series of camera systems that offer a wide variety of features. The                 

Realsense model this project is using is the D435i. The D435i is optimized for 3d modeling and                 

depth sensing. The D435i has two depth sensors, an rgb camera, and an IR projector. It has a                  

large field of view and can be more accurate when it is mounted on a device and is moving fast                    

when compared to other Realsense Models. The D435i has an added inertial measurement unit              

(IMU) which can track where the unit has moved through space. These features  

 

Experiment 5:  

Cloud Video Streaming Platform 

This project attempts to create a platform that can take a live video input and output the real-time                  

livestream to a web server for viewing. A private platform to stream videos gives increased               

freedom with areas such as video encoding, resolution, object recognition, and playback. A             

Raspberry Pi was used originally to capture live video with a video capture card and to send the                  

stream to a web server hosted on Google Cloud platform. To test and improve the system more                 

efficiently, a computer screen was streamed to the cloud platform directly (No Raspberry Pi or               

capture card was involved). Below is a list showing the technologies used in the platform divided                

into sections (front-end, database, and server-end). 

Technologies:  

- Web Application 

- Google Application Engine 

- Flask Framework (Python language)  

- Video.js (Javascript language library) for playing videos in HLS format on           



webpage 

- Database 

- Google Cloud Storage Bucket  

- Streaming Server 

- FFmpeg (capturing and streaming video) 

- HLS format (.m3u8 playlist file with .ts video chunks) 

- Server-side scripts 

- External Libraries: Watchdog, Google Cloud Storage 

 

Implementation:  

Flowchart 

1   → 2   → 3   → 4   → 

RPi runs python   

server-side script to   

initiate video streaming,   

file organizing, uploading,   

and playback processes. 

FFmpeg software  

tool to capture   

video in HLS   

format . 

Script uploads video   

chunks when created   

to Google Storage. 

Video element on web    

page reads master video    

playlist file from   

Google Storage. 

 

5   → 6 

Server stops the stream. Full streamed video       

uploaded to cloud storage for user playback. 

Appropriate files reorganized and/or removed     

to prepare for future stream. 

 



 

Figure 9: Playback Video Web Page 

Difficulties:  

The platform was left in a completed state but had imperfections affecting latency and              

video playback. Using a timer on the server, the streaming video on the web application was                

found to be around 12 to 20 seconds behind the real-time video being captured. This is an                 

acceptable delay but would be ineffective in scenarios desiring immediate responses. Playback            

video was also inconsistent, dysfunctional segments often were present in archived videos. This             

dysfunction was in the form of specific video chunks (near 5 seconds) being blacked out.  

Future Work: 

- Research into using other web streaming protocols (WebRTC?) instead of HLS  

- Research deeper into HLS protocol, using the other playlist (.m3u8) modes such as Live,              

VOD, etc. 

- Try out different video chunk (.ts) times and number of total chunks 

- Research into ffmpeg video encoding in the cloud. Send video stream from local             

computer to cloud server using RTMP. 

 

CONCLUSION 



A Intel RealSense camera, LIDAR sensor, and web streaming platform were all finished             

to a level of acceptability but a cohesive system was left as future work. The RealSense camera                 

and LIDAR sensor both created 3-D and 2-D models, respectively, using the mapping             

approaches of RTAB-Map and Hector SLAM. Problems arose during linkage of both parties,             

development of a physical robot frame and additional programming of utilized ROS packages is              

needed for advancement. A web streaming platform was established but wasn’t developed            

further to integrate with the mapping created inside the ROS framework. Visualizations were left              

to be viewed on the server or as exports using tools such as RViz. Exploration with VR was also                   

not reached and was left for future development. 
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